मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate: ∫exe2x+4ex+13 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx

बेरीज

उत्तर

Let I = `int "e^x/sqrt(e^(2x) + 4e^x + 13)` dx

`= int e^x/sqrt((e^x)^2 +  4e^x  + 13)` dx

Put ex = t

∴ ex  dx = dt

∴ I = `(dt)/(sqrt(t^2 + 4t + 13))`

`= int 1/sqrt(t^2 + 4t + 4 - 4 + 13)` dt

`= int 1/(sqrt((t + 2)^2 + 9))` dt

`= int 1/(sqrt((t + 2)^2 + (3)^2))` dt

`= log |t + 2 + sqrt((t + 2)^2 + (3)^2)|` + c

`= log |(t + 2) + sqrt(t^2 + 4t + 13)| + c`

∴ I = `log |(e^x + 2) + sqrt(e^(2x) + 4e^x + 13)| + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Integration - MISCELLANEOUS EXERCISE - 5 [पृष्ठ १३९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 5 Integration
MISCELLANEOUS EXERCISE - 5 | Q IV. 3) iv) | पृष्ठ १३९

संबंधित प्रश्‍न

If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x log 2x.


Integrate the function in (sin-1x)2.


Integrate the function in (x2 + 1) log x.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Find : 

`∫(log x)^2 dx`


Evaluate the following: `int x.sin^-1 x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Integrate the following w.r.t.x : e2x sin x cos x


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Solution of the equation `xdy/dx=y log y` is ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×