Advertisements
Advertisements
प्रश्न
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
उत्तर
Let I = `int "e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`= int e^x/sqrt((e^x)^2 + 4e^x + 13)` dx
Put ex = t
∴ ex dx = dt
∴ I = `(dt)/(sqrt(t^2 + 4t + 13))`
`= int 1/sqrt(t^2 + 4t + 4 - 4 + 13)` dt
`= int 1/(sqrt((t + 2)^2 + 9))` dt
`= int 1/(sqrt((t + 2)^2 + (3)^2))` dt
`= log |t + 2 + sqrt((t + 2)^2 + (3)^2)|` + c
`= log |(t + 2) + sqrt(t^2 + 4t + 13)| + c`
∴ I = `log |(e^x + 2) + sqrt(e^(2x) + 4e^x + 13)| + c`
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log 2x.
Integrate the function in (sin-1x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Find :
`∫(log x)^2 dx`
Evaluate the following: `int x.sin^-1 x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: ∫ (log x)2 dx
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
Solution of the equation `xdy/dx=y log y` is ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate the following.
`intx^2e^(4x)dx`