Advertisements
Advertisements
प्रश्न
Integrate the function in `e^x (1/x - 1/x^2)`.
उत्तर
Let `I = inte^x (1/x - 1/x^2) dx`
`= int e^x {1/x + [d/dx (1/x)]} dx`
`= e^x xx 1/x + C = e^x/x + C` `...[∵ int e^x (f (x)+ f' (x)) dx = e^x f (x) + C]`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x2 log x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2.log x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("9x"^2 - 25)`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int "e"^x x/(x + 1)^2 "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`