Advertisements
Advertisements
प्रश्न
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
उत्तर
Let I = `int 1/(1 + "e"^"x")`dx
Dividing Nr. and Dr. by ex, we get
I = `int "e"^-"x"/("e"^-"x" + 1)` dx
Put `"e"^-"x" + 1` = t
∴ `- "e"^-"x" "dx" = "dt"`
∴ `"e"^-"x" "dx" = - "dt"`
∴ I = `int (- "dt")/"t" = - log |"t"| + "c"`
∴ I = - log `|"e"^-"x" + 1|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int"e"^(4x - 3) "d"x` = ______ + c
`int logx/(1 + logx)^2 "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
Find: `int e^x.sin2xdx`
Solve: `int sqrt(4x^2 + 5)dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int1/(x+sqrt(x)) dx` = ______
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).