मराठी

Find: ∫ex.sin2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Find: `int e^x.sin2xdx`

बेरीज

उत्तर

Let I = `int e^xsin2xdx`

Applying integration by parts

I = `int \underset(\text(I))(e)^x \underset(\text(II))(sin 2x) dx`

= `e^x int sin 2xdx - int [d/(dx) (e^x) int sin 2xdx]dx`

= `e^x((-cos2x)/2) + 1/2 int e^x cos 2xdx`

= `1/2(-e^x cos2x) + 1/2[e^x int cos 2xdx - int (d/(dx) (e^x) int cos2xdx)dx]`

= `1/2 (-e^x cos2x) + 1/2[(e^xsin2x)/2 - 1/2 int e^x sin 2xdx]`

= `1/2 (-e^x cos 2x) + 1/4 (e^x sin 2x) - 1/4 int e^x sin 2xdx + K`

∴ 4I = `-2e^x cos2x + e^xsin2x - I + K`

or 5I = `-2e^x cos2x + e^xsin2x + K`

I = `1/5(e^xsin2x - 2e^xcos2x) + K/5`

or I = `1/5(e^xsin2x - 2e^xcos2x) + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in (sin-1x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: ∫ (log x)2 dx


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Evaluate:

`int (logx)^2 dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×