English

Find: ∫ex.sin2xdx - Mathematics

Advertisements
Advertisements

Question

Find: `int e^x.sin2xdx`

Sum

Solution

Let I = `int e^xsin2xdx`

Applying integration by parts

I = `int \underset(\text(I))(e)^x \underset(\text(II))(sin 2x) dx`

= `e^x int sin 2xdx - int [d/(dx) (e^x) int sin 2xdx]dx`

= `e^x((-cos2x)/2) + 1/2 int e^x cos 2xdx`

= `1/2(-e^x cos2x) + 1/2[e^x int cos 2xdx - int (d/(dx) (e^x) int cos2xdx)dx]`

= `1/2 (-e^x cos2x) + 1/2[(e^xsin2x)/2 - 1/2 int e^x sin 2xdx]`

= `1/2 (-e^x cos 2x) + 1/4 (e^x sin 2x) - 1/4 int e^x sin 2xdx + K`

∴ 4I = `-2e^x cos2x + e^xsin2x - I + K`

or 5I = `-2e^x cos2x + e^xsin2x + K`

I = `1/5(e^xsin2x - 2e^xcos2x) + K/5`

or I = `1/5(e^xsin2x - 2e^xcos2x) + c`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 1

RELATED QUESTIONS

Integrate the function in x sec2 x.


Integrate the function in tan-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : e2x sin x cos x


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Evaluate the following:

`int_0^pi x log sin x "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int logx  dx = x(1+logx)+c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate:

`int x^2 cos x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×