Advertisements
Advertisements
Question
Find: `int e^x.sin2xdx`
Solution
Let I = `int e^xsin2xdx`
Applying integration by parts
= `e^x int sin 2xdx - int [d/(dx) (e^x) int sin 2xdx]dx`
= `e^x((-cos2x)/2) + 1/2 int e^x cos 2xdx`
= `1/2(-e^x cos2x) + 1/2[e^x int cos 2xdx - int (d/(dx) (e^x) int cos2xdx)dx]`
= `1/2 (-e^x cos2x) + 1/2[(e^xsin2x)/2 - 1/2 int e^x sin 2xdx]`
= `1/2 (-e^x cos 2x) + 1/4 (e^x sin 2x) - 1/4 int e^x sin 2xdx + K`
∴ 4I = `-2e^x cos2x + e^xsin2x - I + K`
or 5I = `-2e^x cos2x + e^xsin2x + K`
I = `1/5(e^xsin2x - 2e^xcos2x) + K/5`
or I = `1/5(e^xsin2x - 2e^xcos2x) + c`
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : e2x sin x cos x
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^pi x log sin x "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int logx dx = x(1+logx)+c`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`