Advertisements
Advertisements
Question
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Solution
Let I = `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
= `int t.sin^-1 t. 1/sqrt(1 - t^2).dt`
Put sin–1 t = θ
∴ `1/sqrt(1 - t^2).dt` = dθ
and
t = sin θ
∴ I = `int (sinθ).θdθ`
= `int θ sin θ dθ`
= `θ int sin θ dθ - int [d/(dθ) (θ) int sin θ dθ]dθ`
= `θ (- cos θ) - int 1. (- cosθ)dθ`
= `- θ cosθ + int cosθ dθ`
= – θ cos θ + sin θ + c
= `- θ.sqrt(1 - sin^2θ) + sin θ + c`
= `- sin^-1 t.sqrt(1 - t^2) + t + c`
= `- sqrt(1 - t^2).sin^-1 t + t + c`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x cos-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int logx/x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`