Advertisements
Advertisements
Question
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Solution
Let I = `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Put aex − be−x = t
∴ `["ae"^("x") − "be"^(−"x") .(-1)] "dx" = "dt"`
∴ `("ae"^("x") + "be"^(−"x")) "dx" = "dt"`
∴ I = `int "dt"/"t"`
∴ I = `int 1/"t" "dt"`
∴ I = log | t | + c
∴ I = log | aex − be−x | + c
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sin 3x.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int sin4x cos3x "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`