Advertisements
Advertisements
प्रश्न
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
उत्तर
Let I = `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Put aex − be−x = t
∴ `["ae"^("x") − "be"^(−"x") .(-1)] "dx" = "dt"`
∴ `("ae"^("x") + "be"^(−"x")) "dx" = "dt"`
∴ I = `int "dt"/"t"`
∴ I = `int 1/"t" "dt"`
∴ I = log | t | + c
∴ I = log | aex − be−x | + c
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x log x.
Integrate the function in x sec2 x.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int (cos2x)/(sin^2x cos^2x) "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^x.sin2xdx`
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.