Advertisements
Advertisements
प्रश्न
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
उत्तर
Let I = `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Put aex − be−x = t
∴ `["ae"^("x") − "be"^(−"x") .(-1)] "dx" = "dt"`
∴ `("ae"^("x") + "be"^(−"x")) "dx" = "dt"`
∴ I = `int "dt"/"t"`
∴ I = `int 1/"t" "dt"`
∴ I = log | t | + c
∴ I = log | aex − be−x | + c
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int logx/(1 + logx)^2 "d"x`
∫ log x · (log x + 2) dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^pi x log sin x "d"x`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`intx^3 e^(x^2)dx`