Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
उत्तर
Let I = `int 1/(2"x" + 3"x" * log"x")` dx
`= int 1/("x"(2 + 3 log "x"))` dx
Put 2 + 3 log x = t
∴ `3 * 1/"x" "dx"` = dt
∴ `1/"x" "dx" = 1/3 "dt"`
∴ I = `1/3 int 1/"t" * "dt"`
`= 1/3` log |t| + c
∴ I = `1/3` log |2 + 3 log x| + c
APPEARS IN
संबंधित प्रश्न
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int x^x (1 + logx) "d"x`
`int cos^3x dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`