Advertisements
Advertisements
प्रश्न
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
उत्तर
Let I = `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Let `2"e"^"x" - 3 = "A" (4"e"^"x" + 1) + "B" "d"/"dx" (4"e"^"x" + 1)`
∴ `2"e"^"x" - 3 = (4"A" + 4"B")"e"^"x" + "A"`
Comparing the coefficients of `"e"^"x"` and constant term on both sides, we get
4A + 4B = 2 and A = - 3
Solving these equations, we get
B = `7/2`
∴ I = `(- 3 (4"e"^"x" + 1) + 7/2(4"e"^"x"))/(4"e"^"x" + 1)` dx
`= - 3 int "dx" + 7/2 int (4"e"^"x")/(4"e"^"x" + 1)`dx
∴ I = `- 3"x" + 7/2 log |4"e"^"x" + 1|` + c ...`[because int ("f" '("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`1/(1 - tan x)`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Write `int cotx dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`