Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
उत्तर
Let I = `int "dx"/sqrt(4"x"^2 - 5)`
`= int 1/(sqrt (4("x"^2 - 5/4)))`dx
`= 1/2 int 1/(sqrt("x"^2 - ((sqrt5)/2)^2))` dx
`= 1/2 log |"x" + sqrt("x"^2 - (sqrt5/2)^2)|` + c
∴ I = `1/2 log |"x" + sqrt("x"^2 - 5/4)|` + c
APPEARS IN
संबंधित प्रश्न
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Evaluate: ∫ (log x)2 dx
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int 1/x "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`inte^(xloga).e^x dx` is ______
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`