Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
उत्तर
Let I = `int "cosec" (log x)[1 - cot (log x)].dx`
Put log x = t
∴ et
∴ dx = et .dt
∴ I = `int "cosec" t (1 - cot t).e^t dt`
= `int e^t ["cosec" t - "cosec" t cot t].dt`
= `int e^t ["cosec" t + d/dt ("cosec" t)].dt`
= `e^t "cosec" t + c ...[∵ int e^t [f(t) + f'(t)].dt = e^t f(t) + c]`
= x . cosec (log x) + c.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x log x.
Integrate the function in x cos-1 x.
Integrate the function in x sec2 x.
Integrate the function in x (log x)2.
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^2e^(4x)dx`