Advertisements
Advertisements
प्रश्न
`int tan^-1 sqrt(x) "d"x` is equal to ______.
पर्याय
`(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
`x tan^-1 sqrt(x) - sqrt(x) + "C"`
`sqrt(x) - x tan^-1 sqrt(x) + "C"`
`sqrt(x) - (x + 1) tan^-1 sqrt(x) + "C"`
उत्तर
`int tan^-1 sqrt(x) "d"x` is equal to `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`.
Explanation:
Let I = `int 1 * tan^-1 sqrt(x) "d"x`
= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1 sqrt(x))"'" int 1"d"x]"d"x`
= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x` ....[Integrating by parrts]
= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`
Put x = t2
⇒ dx = 2t dt
∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`
= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`
= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`
= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`
= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x (log x)2.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int(x + 1/x)^3 dx` = ______.
Evaluate `int 1/(x(x - 1)) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Find `int_0^1 x(tan^-1x) "d"x`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`