Advertisements
Advertisements
प्रश्न
Find `int_0^1 x(tan^-1x) "d"x`
उत्तर
I = `int_0^1x(tan^-1x)^2 "d"x`
Integrating by parts, we have
I = `x^2/2[(tan^-1x)^2]_0^1 - 1/2 int_0^1 x^2 * 2 (tan^-1x)/(1 + x^2) "d"x`
= `pi^2/32 - int_0^1 x^2/(1 + x) * tan^-1 x"d"x`
= `pi^2/32 - 1_1`, where I1 = `int_0^1 x^2/(1 + x^2) tan^-1 x"d"x`
Now I1 = `int_0^1 (x^2 + 1 - 1)/(1 + x^2) tan^-1x "d"x`
= `int_0^1 tan^-1 x"d"x - int_0^1 1/(1 + x^2) tan^-1 x"d"x`
= `"I"_2 - 1/2 ((tan^-1x)^2)_0^1`
= `"I"_2 - pi^2/32`
Here I2 = `int_0^1 tan^-1 x"d"x = (x tan^-1x)_0^1 - int_0^1 x/(1 + x^2) "d"x`
= `pi/4 - 1/2(log|1 + x^2|)_0^1`
= `pi/4 - 1/2 log2`
Thus I2 = `pi/4 - 1/2 log 2 - pi^2/32`
Therefore, I = `pi^2/32 - pi/4 + 1/2 log2 + pi^2/32`
= `pi^2/16 - pi/4 + 1/2 log2`
= `(pi^2 - 4pi)/16 + log sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x (log x)2.
Integrate the function in e2x sin x.
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`inte^(xloga).e^x dx` is ______
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`int x^3 e^(x^2) dx`