हिंदी

Find d∫01x(tan-1x) dx - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int_0^1 x(tan^-1x)  "d"x`

योग

उत्तर

I = `int_0^1x(tan^-1x)^2  "d"x`

Integrating by parts, we have

I = `x^2/2[(tan^-1x)^2]_0^1 - 1/2 int_0^1 x^2 * 2 (tan^-1x)/(1 + x^2)  "d"x`

= `pi^2/32 - int_0^1  x^2/(1 + x) * tan^-1  x"d"x`

= `pi^2/32 - 1_1`, where I1 = `int_0^1 x^2/(1 + x^2) tan^-1 x"d"x`

Now I1 = `int_0^1 (x^2 + 1 - 1)/(1 + x^2) tan^-1x "d"x`

= `int_0^1 tan^-1 x"d"x - int_0^1 1/(1 + x^2) tan^-1 x"d"x`

= `"I"_2 - 1/2 ((tan^-1x)^2)_0^1`

= `"I"_2 - pi^2/32`

Here I2 = `int_0^1 tan^-1 x"d"x = (x tan^-1x)_0^1 - int_0^1 x/(1 + x^2)  "d"x`

= `pi/4 - 1/2(log|1 + x^2|)_0^1`

= `pi/4 - 1/2 log2`

Thus I2 = `pi/4 - 1/2 log 2 - pi^2/32`

Therefore, I = `pi^2/32 - pi/4 + 1/2 log2 + pi^2/32`

= `pi^2/16 - pi/4 + 1/2 log2`

= `(pi^2 - 4pi)/16 + log sqrt(2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 18 | पृष्ठ १५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


`int"e"^(4x - 3) "d"x` = ______ + c


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Solve: `int sqrt(4x^2 + 5)dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`int e^(logcosx)dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×