Advertisements
Advertisements
प्रश्न
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
उत्तर
We can redefine f as f(x) = `{{:(2 - x",", "if" - 1 < x ≤ 0),(x + 2",", "if" 0 < ≤ 1),(3x",", "if" 1 < x ≤ 2):}`
Therefore, `int_(-1)^2 "f"(x)"d"x = int_(-1)^0 (2 - x)"d"x + int_0^1 (x + 2)"d"x + int_1^2 3x"d"x` ....(By P2)
= `(2x = x^2/2)_(-1)^0 + (x^2/2 + 2x)_0^1 + ((3x^2)/2)_1^2`
= `0 - (-2 - 1/2) + (1/2 + 2) + 3(4/2 - 1/2)`
= `5/2 + 5/2 + 9/2`
= `19/2`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^1 x tan^-1x dx` = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Solve the following.
`int_1^3 x^2 logx dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`