Advertisements
Advertisements
प्रश्न
`int_2^4 x/(x^2 + 1) "d"x` = ______
उत्तर
`1/2 log(17/5)`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate`int (1)/(x(3+log x))dx`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate `int_1^3 x^2*log x "d"x`
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_1^2 x logx dx`= ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`