Advertisements
Advertisements
प्रश्न
`int_2^4 x/(x^2 + 1) "d"x` = ______
उत्तर
`1/2 log(17/5)`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : ∫ log (1 + x2) dx
Evaluate = `int (tan x)/(sec x + tan x)` . dx
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`