मराठी

Evaluate : ∫ ( 3 X − 2 ) √ X 2 + X + 1 D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .

उत्तर

\[I = \int\left( 3x - 2 \right)\sqrt{x^2 + x + 1}dx\]

\[\text { Let }3x - 2 = a(2x + 1) + b\]

\[ \Rightarrow a = \frac{3}{2} \text { and } b = \frac{- 7}{2}\]

\[\text { So,} I = \frac{3}{2}\int\left( 2x + 1 \right)\sqrt{x^2 + x + 1}dx - \frac{7}{2}\int\sqrt{x^2 + x + 1}dx\]

\[\text { Let } I = \frac{3}{2} I_1 - \frac{7}{2} I_2 \ldots\left( 1 \right)\]

\[\text{ Here }, I_1 = \int\left( 2x + 1 \right)\sqrt{x^2 + x + 1}dx \text { and } I_2 = \int\sqrt{x^2 + x + 1}dx\]

\[\text { Now }, I_1 = \int\left( 2x + 1 \right)\sqrt{x^2 + x + 1}dx\]

\[ \text { Let } x^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]

\[\text { So }, I_1 = \int\sqrt{t} dt = \frac{2}{3} t^\frac{3}{2} = \frac{2}{3}( x^2 + x + 1 )^\frac{3}{2} + c_1 \ldots\left( 2 \right)\]

\[\text { And } I_2 = \int\sqrt{x^2 + x + 1}dx = \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dx \]

\[ = \frac{x + \frac{1}{2}}{2}\sqrt{x^2 + x + 1} + \frac{3}{8}\log\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + c_2 \ldots\left( 3 \right)\]

By putting the values of equation (2) and equation (3) in equation (1), we get:

\[I = \left( x^2 + x + 1 \right)^\frac{3}{2} - \frac{7}{2}\left[ \left( \frac{2x + 1}{4} \right)\sqrt{x^2 + x + 1} + \frac{3}{8}\log\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 1

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_4^9 1/sqrt(x)dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×