मराठी

Prove that ∫ b a f ( x ) d x = ∫ b a f ( a + b − x ) d x and hence evaluate ∫ π 3 π 6 d x 1 + √ tan x . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   

बेरीज

उत्तर

`int _a^b f(x) dx = int_a^b f (a + b -x ) dx`

Taking L.H.S 

`int _a^b f (x) dx `              ..... ( i )

Let t = a + b - x 

x = a + b - t 

`(dx)/(dt) = 0 + 0 - 1`

⇒ dx = - dt 

changing limits

at x = a  t = a + b - a = b 

x = b  t = a + b - b = a

so integral (i) becomes

` int _b^a f (a + b - t )(- dt )`

using `int_a^b f(x) dx = - int_b^a f (x) dx `

⇒ `int_a^b f ( a + b  -t ) dt`

changing variable

`int _a^b f ( a + b -x ) dx `

L.H.S = R.H.S
Hence proved. 

`I = int _(pi/6)^(pi/3) 1/(1 +sqrt(tan x ))  dx`

`I = int _(pi/6)^(pi/3) sqrt(cos x )/(sqrt(cos x ) + sin x )  dx`        ......( i )

using property

`I = int _(pi/6)^(pi/3) (sqrt(cos (pi/6 + pi/3 -x)))/(cos sqrt(pi/6 + pi/3 - x) +  sqrt(sin (pi/6 + pi/3 - x ))` dx

`I = int _(pi/6)^(pi/3) sqrt(sin x ) /(sqrt (sin x ) + sqrt (cos x) ) dx `         ....... ( ii ) 

Adding (i) & (ii) 

`2I = int _(pi/6)^(pi/3) sqrt(cos x ) /(sqrt(cos x ) + sqrt( sin x ) )  dx  + int_(pi/6)^(pi/3) sqrt( sin x) /( sqrt( sin x ) + sqrt( cos x ) ) dx `

`2I = int _(pi/6)^(pi/3) (sqrt(cos x ) + sqrt( sin x )) /( sqrt ( cos x ) + sqrt( sin x )) dx `

`2I = int _(pi/6)^(pi/3) dx`

`2I = int _(pi/6)^(pi/3) x`

`2I = pi / 3 -  pi / 6 `

`2I = pi /6 `

` I = pi / 12 `

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^pi x sin^2x dx` = ______ 


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_a^b f(x)dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_4^9 1/sqrt(x)dx` = ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Solve the following.

`int_1^3 x^2 logx  dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×