Advertisements
Advertisements
प्रश्न
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
उत्तर
`int _a^b f(x) dx = int_a^b f (a + b -x ) dx`
Taking L.H.S
`int _a^b f (x) dx ` ..... ( i )
Let t = a + b - x
x = a + b - t
`(dx)/(dt) = 0 + 0 - 1`
⇒ dx = - dt
changing limits
at x = a t = a + b - a = b
x = b t = a + b - b = a
so integral (i) becomes
` int _b^a f (a + b - t )(- dt )`
using `int_a^b f(x) dx = - int_b^a f (x) dx `
⇒ `int_a^b f ( a + b -t ) dt`
changing variable
`int _a^b f ( a + b -x ) dx `
L.H.S = R.H.S
Hence proved.
`I = int _(pi/6)^(pi/3) 1/(1 +sqrt(tan x )) dx`
`I = int _(pi/6)^(pi/3) sqrt(cos x )/(sqrt(cos x ) + sin x ) dx` ......( i )
using property
`I = int _(pi/6)^(pi/3) (sqrt(cos (pi/6 + pi/3 -x)))/(cos sqrt(pi/6 + pi/3 - x) + sqrt(sin (pi/6 + pi/3 - x ))` dx
`I = int _(pi/6)^(pi/3) sqrt(sin x ) /(sqrt (sin x ) + sqrt (cos x) ) dx ` ....... ( ii )
Adding (i) & (ii)
`2I = int _(pi/6)^(pi/3) sqrt(cos x ) /(sqrt(cos x ) + sqrt( sin x ) ) dx + int_(pi/6)^(pi/3) sqrt( sin x) /( sqrt( sin x ) + sqrt( cos x ) ) dx `
`2I = int _(pi/6)^(pi/3) (sqrt(cos x ) + sqrt( sin x )) /( sqrt ( cos x ) + sqrt( sin x )) dx `
`2I = int _(pi/6)^(pi/3) dx`
`2I = int _(pi/6)^(pi/3) x`
`2I = pi / 3 - pi / 6 `
`2I = pi /6 `
` I = pi / 12 `
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^{pi/2} cos^2x dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^pi x sin^2x dx` = ______
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_a^b f(x)dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_4^9 1/sqrt(x)dx` = ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Solve the following.
`int_1^3 x^2 logx dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`