मराठी

∫-11|x-2|x-2dx, x ≠ 2 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.

पर्याय

  • 1

  • – 1

  • 2

  • – 2

MCQ
रिकाम्या जागा भरा

उत्तर

`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to – 2.

Explanation:

`int_-1^1 |x - 2|/(x - 2) dx`; x ≠ 2 = `[-x]_-1^1`

= – [1 + 1]

= – 2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^1 (1 - x)^5`dx = ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×