मराठी

By using the properties of the definite integral, evaluate the integral: ∫02x2-xdx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`

बेरीज

उत्तर

Let `I = int_0^2 x sqrt (2 - x)  dx`

Put 2 - x = t

⇒ dx = dt

When x = 0, t = 2

and x = 2, t =  0

∵ `I = - int_2^0 (2 - t) sqrtt  dt`

`= int_0^2 (2t^(1/2) - t^(3/2)) dt`

`= [(2t^(3/2))/(3/2) - t^(5/2)/(5/2)]_0^2`     `...[∵ - int_a^0 f (x) dx = int_0^a f (x) dx]`

`= [4/3 t^(3/2) - 2/5 t^(5/2)]_0^2`

`= 4/3 (2)^(3/2) - 2/5 (2)^(5/2)`

`= 4/3 xx 2 sqrt2 - 2/5 xx 4 sqrt2`

`= (8sqrt2)/3 - (8 sqrt 2)/5`

`= (16 sqrt2)/15`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 9 | पृष्ठ ३४७

संबंधित प्रश्‍न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate`int (1)/(x(3+log x))dx` 


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^{pi/2} xsinx dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


`int_0^1|3x - 1|dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×