Advertisements
Advertisements
प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
उत्तर
Let `I=int_0^pi(xsinx)/(1+sinx)dx`
`=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x))dx [because int_0^a f(x)dx=int_0^af(a-x)dx]`
`=int_0^pi((pi-x)sinx)/(1+sinx)dx`
`=int_0^pi(pisinx)/(1+sinx)dx-I`
`I=int_0^pi(pisinx)/(1+sinx)dx-I`
`2I=int_0^pi(pisinx.(1-sinx))/((1+sinx)(1-sinx))dx`
`2I=int_0^pi(pisinx.(1-sinx))/(1-sin^2x)dx`
`(2I)/pi=int_0^pi(sinx.(1-sinx))/cos^2xdx`
`(2I)/pi=int_0^pi(sinx.-sin^2x)/cos^2xdx`
`(2I)/pi=int_0^pi(sinx)/cos^2xdx-int_0^pi(sin^2x)/cos^2xdx`
`(2I)/pi=int_0^pisecx.tanxdx-int_0^pitan^2xdx`
`(2I)/pi=[secx]_0^pi-int_0^pi(sec^2x-1)dx`
`(2I)/pi=[secpi-sec0]-int_0^pisec^2x.dx+int_0^pi1dx`
`(2I)/pi=[-1-1]-[tanx]_0^pi_[x]_0^pi`
`(2I)/pi=[-2]-[tanpi-tan0]+pi`
`(2I)/pi=[-2]-0+pi`
`thereforeI=((pi-2)pi)/2`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
`int_"a"^"b" "f"(x) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/2} cos^2x dx` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
Which of the following is true?
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_0^1 1/(2x + 5) dx` = ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`