Advertisements
Advertisements
प्रश्न
`int_0^1 1/(2x + 5) dx` = ______.
पर्याय
`1/2` log `7/5`
`1/2` log `5/7`
log `7/5`
`1/4` log `7/5`
उत्तर
`int_0^1 1/(2x + 5) dx` = `bb(underline(1/2 log 7/5))`.
Explanation:
⇒ 2x + 5 = t
⇒ 2dx = dt
⇒ dx = `1/2`dt
⇒ `int_5^7 1/2 (dt)/t`
⇒ `1/2 (logt)_5^7`
⇒ `1/2 [log7 - log5]`
⇒ `(log7 - log5)/2`
⇒ `1/2 [log 7 - log 5]`
⇒ `1/2 log 7/5` .....`[log m - log n = log m/n]`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 x tan^-1x dx` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_a^b f(x)dx` = ______.
`int_4^9 1/sqrt(x)dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Solve the following.
`int_1^3 x^2 logx dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`