Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
उत्तर
Let I = `int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
I = `int_0^(pi/2) cos^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
`2I = int_0^(pi/2) (sin^(3/2)x/(sin^(3/2)x+cos^(3/2) x)+cos^(3/2)x/(sin^(3/2)x + cos^(3/2)x)) dx`
Simplify the numerator:
`(sin^(3/2)x+cos^(3/2) x)/(sin^(3/2)x+cos^(3/2)) = 1`
`2I = int_0^(pi/2) 1 dx`
`int_0^(pi/2) 1 dx = [x]_0^(pi/2)=pi/2 - 0 = pi/2`
`2I = pi/2`
`I=pi/4`
`pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate`int (1)/(x(3+log x))dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
`int_"a"^"b" "f"(x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
`int_1^2 x logx dx`= ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^3logx dx`