मराठी

Evaluate: π∫0πx1+sinxdx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^π x/(1 + sinx)dx`.

बेरीज

उत्तर

`int_0^π x/(1 + sinx)dx`

Let I = `int_0^π x/(1 + sinx)dx`  ...(i)

On using property

`int_0^a f(x)dx = int_0^a f(a - x)dx`

∴ I = `int_0^π (π - x)/(1 + sin(π - x))dx`

I = `int_0^π (π - x)/(1 + sinx)dx`  ...(ii)

Adding equations (i) and (ii), we get

2I = `int_0^π π/(1 + sinx)dx`

= `πint_0^π 1/(1 + sinx) xx (1 - sinx)/(1 - sinx)dx`  ...[Multiplying and dividing by (1 – sin x)]

= `πint_0^π (1 - sinx)/(1 - sin^2x)dx = πint_0^π (1 - sinx)/(cos^2x)dx`

= `π[int_0^π 1/(cos^2x)dx - int_0^π sinx/(cos^2x)dx]`

= `π[int_0^π sec^2x  dx - int_0^π secx tanx  dx]`

= `π[[tanx]_0^π - [secx]_0^π]`

= π[0 – (– 1 – 1)]

= 2π

∴ I = `(2π)/2` = π.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 2

संबंधित प्रश्‍न

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_-9^9 x^3/(4 - x^2)` dx = ______


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×