Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^π x/(1 + sinx)dx`.
उत्तर
`int_0^π x/(1 + sinx)dx`
Let I = `int_0^π x/(1 + sinx)dx` ...(i)
On using property
`int_0^a f(x)dx = int_0^a f(a - x)dx`
∴ I = `int_0^π (π - x)/(1 + sin(π - x))dx`
I = `int_0^π (π - x)/(1 + sinx)dx` ...(ii)
Adding equations (i) and (ii), we get
2I = `int_0^π π/(1 + sinx)dx`
= `πint_0^π 1/(1 + sinx) xx (1 - sinx)/(1 - sinx)dx` ...[Multiplying and dividing by (1 – sin x)]
= `πint_0^π (1 - sinx)/(1 - sin^2x)dx = πint_0^π (1 - sinx)/(cos^2x)dx`
= `π[int_0^π 1/(cos^2x)dx - int_0^π sinx/(cos^2x)dx]`
= `π[int_0^π sec^2x dx - int_0^π secx tanx dx]`
= `π[[tanx]_0^π - [secx]_0^π]`
= π[0 – (– 1 – 1)]
= 2π
∴ I = `(2π)/2` = π.
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_1^2 1/(2x + 3) dx` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite intergral:
`int_1^3logx dx`