मराठी

Evaluate: π∫0π2sin2xtan-1(sinx)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.

बेरीज

उत्तर

`int_0^(π/2) sin 2x tan^-1 (sin x) dx`

= `int_0^(π/2) 2 sin x cos x tan^-1 (sin x)dx`

Let sin x = t

cos x dx = dt

When x = 0, t = 0 and x = `π/2`

`\implies` t = 1

`2int_0^1 t tan^-1 t  dt`

= `2[tan^-1 t . t^2/2]_0^1 - 2int_0^1 1/(1 + t^2) . t^2/2 dt`

= `(π/4 . 1 - 0) - int_0^1 (t^2 + 1 - 1)/(1 + t^2)dt`

= `π/4 - int_0^1 (1 - 1/(1 + t^2))dt`

= `π/4 - [t - tan^-1 t]_0^1`

= `π/4 - [1 - π/4 - 0]`

= `π/4 - 1 + π/4`

= `π/2 - 1`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate: `intsinsqrtx/sqrtxdx`

 


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×