Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
उत्तर
`int_0^(π/2) sin 2x tan^-1 (sin x) dx`
= `int_0^(π/2) 2 sin x cos x tan^-1 (sin x)dx`
Let sin x = t
cos x dx = dt
When x = 0, t = 0 and x = `π/2`
`\implies` t = 1
`2int_0^1 t tan^-1 t dt`
= `2[tan^-1 t . t^2/2]_0^1 - 2int_0^1 1/(1 + t^2) . t^2/2 dt`
= `(π/4 . 1 - 0) - int_0^1 (t^2 + 1 - 1)/(1 + t^2)dt`
= `π/4 - int_0^1 (1 - 1/(1 + t^2))dt`
= `π/4 - [t - tan^-1 t]_0^1`
= `π/4 - [1 - π/4 - 0]`
= `π/4 - 1 + π/4`
= `π/2 - 1`.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`