Advertisements
Advertisements
Question
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Solution
`int_0^(π/2) sin 2x tan^-1 (sin x) dx`
= `int_0^(π/2) 2 sin x cos x tan^-1 (sin x)dx`
Let sin x = t
cos x dx = dt
When x = 0, t = 0 and x = `π/2`
`\implies` t = 1
`2int_0^1 t tan^-1 t dt`
= `2[tan^-1 t . t^2/2]_0^1 - 2int_0^1 1/(1 + t^2) . t^2/2 dt`
= `(π/4 . 1 - 0) - int_0^1 (t^2 + 1 - 1)/(1 + t^2)dt`
= `π/4 - int_0^1 (1 - 1/(1 + t^2))dt`
= `π/4 - [t - tan^-1 t]_0^1`
= `π/4 - [1 - π/4 - 0]`
= `π/4 - 1 + π/4`
= `π/2 - 1`.
APPEARS IN
RELATED QUESTIONS
Evaluate `∫_0^(3/2)|x cosπx|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`