English

Evaluate: π∫0π2sin2xtan-1(sinx)dx. - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.

Sum

Solution

`int_0^(π/2) sin 2x tan^-1 (sin x) dx`

= `int_0^(π/2) 2 sin x cos x tan^-1 (sin x)dx`

Let sin x = t

cos x dx = dt

When x = 0, t = 0 and x = `π/2`

`\implies` t = 1

`2int_0^1 t tan^-1 t  dt`

= `2[tan^-1 t . t^2/2]_0^1 - 2int_0^1 1/(1 + t^2) . t^2/2 dt`

= `(π/4 . 1 - 0) - int_0^1 (t^2 + 1 - 1)/(1 + t^2)dt`

= `π/4 - int_0^1 (1 - 1/(1 + t^2))dt`

= `π/4 - [t - tan^-1 t]_0^1`

= `π/4 - [1 - π/4 - 0]`

= `π/4 - 1 + π/4`

= `π/2 - 1`.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×