English

Evaluate: π / 2 ∫ 0 X Sin X Cos X Sin 4 X + Cos 4 X D X . - Mathematics

Advertisements
Advertisements

Question

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .

Solution

\[Let I = \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x}dx . \]

\[\text{ Then we have }: \]

\[I = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)}dx\]

\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - I\]

\[\Rightarrow 2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx\]

 Dividing the numerator and the denominator of RHS by cos4x, we have:

\[2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\tan x se c^2 x}{1 + \tan^4 x} dx\]

\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \tan^4 x} dx\]

\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \left( \tan^2 x \right)^2} dx\]

\[\text { Put} t = \tan^2 x\]

\[ \Rightarrow dt = 2\tan x se c^2 x dx\]

\[\text { When } x \to 0, t \to 0\]

\[\text { When } x \to \frac{\pi}{2}, t \to \infty\]

\[\therefore 2I = \frac{\pi}{4} \int_0^\infty \frac{1}{1 + t^2} dt\]

\[\Rightarrow 2I = \frac{\pi}{4} \left[ \tan^{- 1} \left( t \right) \right]_0^\infty \]

\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( 0 \right) \right]\]

\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \frac{\pi}{2} \right] = \frac{\pi^2}{8}\]

\[ \Rightarrow I = \frac{\pi^2}{16}\]

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×