Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[I = \int_{- 5}^0 \left\{ \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right| \right\} dx\]
\[ \Rightarrow I = \int_{- 5}^0 \left| x \right| d x + \int_{- 5}^0 \left| x + 2 \right| d x + \int_{- 5}^0 \left| x + 5 \right| d x\]
\[\text{We know that}, \left| x \right| = \begin{cases} - x &,& - 5 \leq x \leq 0\\x&,& x > 0\end{cases}\]
\[\left| x + 2 \right| = \begin{cases} - \left( x + 2 \right) &,& - 5 \leq x \leq - 2\\x + 2&,& - 2 < x \leq 0\end{cases}\]
\[\left| x + 5 \right| = \begin{cases} - \left( x + 5 \right) &,& - 5 \leq x \leq 0\\x + 5&,& x > - 5\end{cases}\]
\[ \therefore I = - \int_{- 5}^0 x d x - \int_{- 5}^{- 2} \left( x + 2 \right) d x + \int_{- 2}^0 \left( x + 2 \right) d x + \int_{- 5}^0 \left( x + 5 \right) d x\]
\[ \Rightarrow I = - \left[ \frac{x^2}{2} \right]_{- 5}^0 - \left[ \frac{x^2}{2} + 2x \right]_{- 5}^{- 2} + \left[ \frac{x^2}{2} + 2x \right]_{- 2}^0 + \left[ \frac{x^2}{2} + 5x \right]_{- 5}^0 \]
\[ \Rightarrow I = \frac{25}{2} - \left( 2 - 4 - \frac{25}{2} + 10 \right) - 2 + 4 + \left( - \frac{25}{2} + 25 \right)\]
\[ \Rightarrow I = \frac{63}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is