Advertisements
Advertisements
Question
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Solution
Let I = `int "dt"/sqrt(3"t" - 2"t"^2)`
= `int "dt"/sqrt(-2("t"^2 - 3/2 "t"))`
= `1/sqrt(2) int "dt"/sqrt(-("t"^2 - 3/2 "t" + 9/16 - 9/16))` ....[Making perfect square]
= `1/sqrt(2) int "dt"/sqrt(-[("t" - 3/4)^2 - 9/16])`
= `1/sqrt(2) int "dt"/sqrt(9/16 - ("t" - 3/4)^2)`
= `1/sqrt(2) int "dt"/sqrt((3/4)^2 - ("t" - 3/4)^2)`
= `1/sqrt(2) * sin^-1 ("t" - 3/4)/(3/4) + "C"`
= `1/sqrt(2) sin^-1 (4"t" - 3)/3 + "C"`
Hence, I = `1/sqrt(2) sin^-1 ((4"t" - 3)/3) + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.