Advertisements
Advertisements
Question
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Solution
= `int_1^5 {| x - 1| + | x - 2| + |x - 3|} dx`
= `int_1^5 (x - 1)dx + int_1^2 (2 - x)dx + int_2^5 (x - 2) dx + int_1^3 (3 - x) dx + int_3^5 ( x - 3) dx`
= `[x^2/2 - x]_1^5 + [2x - x^2/2]_1^2 + [x^2/2 - 2x]_2^5 + [3x - x^2/2]_1^3 + [x^2/3 - 3x]_3^5`
= 17
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate :
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.