Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\text{Let I} =\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx.................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\left[ \frac{\pi}{3} + \left( - \frac{\pi}{3} \right) - x \right]}dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{\ tan}\left( - x \right)}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{{- \ tan x}}}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{e^{\ tan} x}{e^{\ tan} x + 1}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1 + e^{\ tan x}}{1 + e^{\ tan x}}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_{- \frac{\pi}{3}}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \left( - \frac{\pi}{3} \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`