English

Evaluate Each of the Following Integral: ∫ π 3 − π 3 1 1 + E T a N X D X - Mathematics

Advertisements
Advertisements

Question

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 

Sum

Solution

\[\text{Let I} =\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx.................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\left[ \frac{\pi}{3} + \left( - \frac{\pi}{3} \right) - x \right]}dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{\ tan}\left( - x \right)}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{{- \ tan x}}}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{e^{\ tan} x}{e^{\ tan} x + 1}dx . . . . . \left( 2 \right)\]

Adding (1) and (2), we get

\[2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1 + e^{\ tan x}}{1 + e^{\ tan x}}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_{- \frac{\pi}{3}}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \left( - \frac{\pi}{3} \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.4 | Q 7 | Page 61

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×