Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[I = \int_0^4 \left\{ \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]
\[ \Rightarrow I = \int_0^4 \left| x \right| d x + \int_0^4 \left| x - 2 \right| d x + \int_0^4 \left| x - 4 \right| d x\]
\[\text{We know that}, \left| x \right| = \begin{cases} - x &,& - 5 \leq x \leq 0\\x&,& x > 0\end{cases}\]
\[\left| x - 2 \right| = \begin{cases} - \left( x - 2 \right) &,& 0 \leq x \leq 2\\x - 2&,& 2 < x \leq 4\end{cases}\]
\[\left| x - 4 \right| = \begin{cases} - \left( x - 4 \right) &,& 0 \leq x \leq 4\\x - 4&,& x > 4\end{cases}\]
\[ \therefore I = \int_0^4 x d x - \int_0^2 \left( x - 2 \right) d x + \int_2^4 \left( x - 2 \right) d x - \int_0^4 \left( x - 4 \right) d x\]
\[ \Rightarrow I = \left[ \frac{x^2}{2} \right]_0^4 - \left[ \frac{x^2}{2} - 2x \right]_0^2 + \left[ \frac{x^2}{2} - 2x \right]_2^4 - \left[ \frac{x^2}{2} - 4x \right]_0^4 \]
\[ \Rightarrow I = 8 - \left( 2 - 4 \right) + 8 - 8 - 2 + 4 - \left( 8 - 16 \right)\]
\[ \Rightarrow I = 20\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`