Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I} =\int_0^\pi x\sin x \cos^2 xdx .....................(1)\]
Then,
\[I = \int_0^\pi \left( \pi - x \right)\sin\left( \pi - x \right) \cos^2 \left( \pi - x \right)dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \left( \pi - x \right)\sin x \cos^2 xdx .................(2)\]
Adding (1) and (2), we have
\[2I = \int_0^\pi \left( \pi - x + x \right)\sin x \cos^2 xdx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \sin x \cos^2 xdx\]
\[ \Rightarrow 2I = - \pi \int_0^\pi \cos^2 x\left( - \sin x \right)dx\]
\[ \Rightarrow 2I = \left.- \pi \times \frac{\cos^3 x}{3}\right|_0^\pi .................\left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]
\[ \Rightarrow 2I = - \frac{\pi}{3}\left( \cos^3 \pi - \cos^2 0 \right)\]
\[\Rightarrow 2I = - \frac{\pi}{3}\left( - 1 - 1 \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is