English

Evaluate the Following Integral: ∫ π 0 X Sin X Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]
Sum

Solution

\[\text{Let I} =\int_0^\pi x\sin x \cos^2 xdx .....................(1)\]

Then,

\[I = \int_0^\pi \left( \pi - x \right)\sin\left( \pi - x \right) \cos^2 \left( \pi - x \right)dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \left( \pi - x \right)\sin x \cos^2 xdx .................(2)\]

Adding (1) and (2), we have

\[2I = \int_0^\pi \left( \pi - x + x \right)\sin x \cos^2 xdx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \sin x \cos^2 xdx\]
\[ \Rightarrow 2I = - \pi \int_0^\pi \cos^2 x\left( - \sin x \right)dx\]
\[ \Rightarrow 2I = \left.- \pi \times \frac{\cos^3 x}{3}\right|_0^\pi .................\left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]
\[ \Rightarrow 2I = - \frac{\pi}{3}\left( \cos^3 \pi - \cos^2 0 \right)\]

\[\Rightarrow 2I = - \frac{\pi}{3}\left( - 1 - 1 \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 21 | Page 95

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^(pi4) sec^4x  "d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×