Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\int_\frac{- \pi}{2}^\frac{\pi}{2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} d x\]
\[Since\, f\left( - x \right) = \sin \left| - x \right| + \cos \left| - x \right| = \sin \left| x \right| + \cos \left| x \right| = f\left( x \right)\]
\[So, f\left( x \right) \text{is an even function} . \]
\[ \therefore I = 2 \int_0^\frac{\pi}{2} \left( \sin x + \cos x \right) dx\]
\[ \Rightarrow I = 2 \left[ - \cos x + \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 2\left( 0 + 1 + 1 - 0 \right)\]
\[ \Rightarrow I = 4\]
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is