Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I }=\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx...............(1)\]
Then,
\[I = \int_0^\frac{\pi}{2} \frac{a\sin\left( \frac{\pi}{2} - x \right) + b\cos\left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)}dx ...................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[= \int_0^\frac{\pi}{2} \frac{a\cos x + b\sin x}{\cos x + \sin x}dx................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\frac{\pi}{2} \left( \frac{a\sin x + b\cos x}{\cos x + \sin x} + \frac{a\cos x + b\sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \left( \frac{a\sin x + b\cos x + a\cos x + b\sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \frac{\left( a + b \right)\sin x + \left( a + b \right)\cos x}{\sin x + \cos x}dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \frac{\left( a + b \right)\left( \sin x + \cos x \right)}{\sin x + \cos x}dx\]
\[\Rightarrow 2I = \int_0^\frac{\pi}{2} \left( a + b \right)dx\]
\[ \Rightarrow 2I = \left( a + b \right) \times \left.x\right|_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \left( a + b \right) \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow 2I = \frac{\pi}{2}\left( a + b \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a + b \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`