Advertisements
Advertisements
Question
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Solution
\[\int x^4 dx\]
\[ = \frac{x^{4 + 1}}{4 + 1} + C\]
\[ = \frac{x^5}{5} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`