Advertisements
Advertisements
Question
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Solution
Let `I = int_0^2 x sqrt (x + 2) dx`
Put x + 2 = t
⇒ dx = dt
When x = 0, t = 2 and when x = 2, t = 4
∴ `I = int_2^4 (t - 2) sqrtt dt `
`= int_2^4 (t^(3/2) - 2t^(1/2)) dt`
`= [2/5 t^(5/2) - 2 xx 2/3 t^(3/2)]_2^4`
`= [2/5 (4)^(5/2) - 4/3 t^(3/2)]_2^4`
`= [2/5 (4)^(5/2) - 4/3 (4)^(3/2)] - [2/5 (2)^(5/2) = 4/3 (2)^(3/2)]`
`= 2/5 (2)^5 - 4/3 (2)^3 - 2/5 xx 4sqrt2 + 4/3 xx 2sqrt2`
`= 2/5 xx 32 - 4/3 xx 8 - 8/5 sqrt2 + 8/3 sqrt2`
`= 64/5 - 32/3 - (8/5 sqrt2 - 8/3 sqrt2)`
`= (192 - 160)/15 - ((24sqrt2 - 40sqrt2))/15`
`= 32/15 + (16sqrt2)/15`
`= 16/15 (2+sqrt2)`
or `(16sqrt2)/15 (sqrt2+1)`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is