English

Evaluate the integral by using substitution. ∫02xx+2 (Put x + 2 = t2) - Mathematics

Advertisements
Advertisements

Question

Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)

Sum

Solution

Let `I = int_0^2 x sqrt (x + 2) dx`

Put x + 2 = t

⇒ dx = dt

When x = 0, t = 2 and when x = 2, t = 4

∴ `I = int_2^4 (t - 2) sqrtt  dt `

`= int_2^4 (t^(3/2) - 2t^(1/2)) dt`

`= [2/5 t^(5/2) - 2 xx 2/3 t^(3/2)]_2^4`

`= [2/5 (4)^(5/2) - 4/3 t^(3/2)]_2^4`

`= [2/5 (4)^(5/2) - 4/3 (4)^(3/2)] - [2/5 (2)^(5/2) = 4/3 (2)^(3/2)]`

`= 2/5 (2)^5 - 4/3 (2)^3 - 2/5 xx 4sqrt2 + 4/3 xx 2sqrt2`

`= 2/5 xx 32 - 4/3 xx 8 - 8/5 sqrt2 + 8/3 sqrt2`

`= 64/5 - 32/3 - (8/5 sqrt2 - 8/3 sqrt2)`

`= (192 - 160)/15 - ((24sqrt2 - 40sqrt2))/15`

`= 32/15 + (16sqrt2)/15`

`= 16/15 (2+sqrt2)`

or `(16sqrt2)/15 (sqrt2+1)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.10 [Page 340]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.10 | Q 4 | Page 340

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×