Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I} =\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx................(1)\]
Then,
\[I = \int_2^8 \frac{\sqrt{10 - \left( 2 + 8 - x \right)}}{\sqrt{2 + 8 - x} + \sqrt{10 - \left( 2 + 8 - x \right)}}dx .....................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_2^8 \frac{\sqrt{x}}{\sqrt{10 - x} + \sqrt{x}}dx ................(2)\]
Adding (1) and (2), we have
\[2I = \int_2^8 \frac{\sqrt{10 - x} + \sqrt{x}}{\sqrt{x} + \sqrt{10 - x}}dx\]
\[ \Rightarrow 2I = \int_2^8 dx\]
\[ \Rightarrow 2I = \left.x\right|_2^8 \]
\[ \Rightarrow 2I = 8 - 2 = 6\]
\[ \Rightarrow I = 3\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`