English

Evaluate the integral by using substitution. ∫02dxx+4-x2 - Mathematics

Advertisements
Advertisements

Question

Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`

Sum

Solution

Let `I = int_0^2  dx/(x + 4 - x^2)`

`= int_0^2 dx/(4 - (x^2 - x))`

`= int_0^2 dx/(4 + 1/4 - (x - 1/2)^2)`

`= int_0^2 dx/((sqrt17/2)^2 - (x - 1/2)^2)`

`= 1/(2 xx sqrt17/2) [log  (sqrt17/2 + (x - 1/2))/(sqrt17/2 - (x - 1/2)}]_0^2`

`= 1/sqrt17 [log  (sqrt17 + 2x - 1)/(sqrt17 - 2x  + 1)]_0^2`

`= 1/sqrt17 [log  (sqrt17 + 3)/(sqrt17 - 3) - log  (sqrt17 - 1)/(sqrt17 + 1)]`

`= 1/sqrt17  log [(sqrt17 + 3)/(sqrt17 - 3) xx (sqrt17 + 1)/(sqrt17 - 1)]`

`= 1/sqrt17 log [(17 +3 + 3sqrt17 + sqrt17)/(17 + 3 - 3sqrt17 - sqrt17)]`

`= 1/sqrt17  log ((20 + 4sqrt17)/(20 - 4sqrt17))`

`= 1/sqrt17  log ((5 + sqrt17)/(5 - sqrt17))`

`= 1/sqrt17  log ((5 + sqrt17)/(5 - sqrt17) xx (5 + sqrt17)/(5 + sqrt17))`

`= 1/sqrt17  log [(25 + 17 + 10sqrt17)/(25 - 17)]`

`= 1/sqrt17  log  [(41 + 10 sqrt17)/8]`

`= 1/sqrt17  log [(21 + 5 sqrt17)/4]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.10 [Page 340]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.10 | Q 6 | Page 340

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×