Advertisements
Advertisements
Question
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Solution
Let `I = int_0^2 dx/(x + 4 - x^2)`
`= int_0^2 dx/(4 - (x^2 - x))`
`= int_0^2 dx/(4 + 1/4 - (x - 1/2)^2)`
`= int_0^2 dx/((sqrt17/2)^2 - (x - 1/2)^2)`
`= 1/(2 xx sqrt17/2) [log (sqrt17/2 + (x - 1/2))/(sqrt17/2 - (x - 1/2)}]_0^2`
`= 1/sqrt17 [log (sqrt17 + 2x - 1)/(sqrt17 - 2x + 1)]_0^2`
`= 1/sqrt17 [log (sqrt17 + 3)/(sqrt17 - 3) - log (sqrt17 - 1)/(sqrt17 + 1)]`
`= 1/sqrt17 log [(sqrt17 + 3)/(sqrt17 - 3) xx (sqrt17 + 1)/(sqrt17 - 1)]`
`= 1/sqrt17 log [(17 +3 + 3sqrt17 + sqrt17)/(17 + 3 - 3sqrt17 - sqrt17)]`
`= 1/sqrt17 log ((20 + 4sqrt17)/(20 - 4sqrt17))`
`= 1/sqrt17 log ((5 + sqrt17)/(5 - sqrt17))`
`= 1/sqrt17 log ((5 + sqrt17)/(5 - sqrt17) xx (5 + sqrt17)/(5 + sqrt17))`
`= 1/sqrt17 log [(25 + 17 + 10sqrt17)/(25 - 17)]`
`= 1/sqrt17 log [(41 + 10 sqrt17)/8]`
`= 1/sqrt17 log [(21 + 5 sqrt17)/4]`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`