Advertisements
Advertisements
प्रश्न
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
उत्तर
Let `I = int_0^2 dx/(x + 4 - x^2)`
`= int_0^2 dx/(4 - (x^2 - x))`
`= int_0^2 dx/(4 + 1/4 - (x - 1/2)^2)`
`= int_0^2 dx/((sqrt17/2)^2 - (x - 1/2)^2)`
`= 1/(2 xx sqrt17/2) [log (sqrt17/2 + (x - 1/2))/(sqrt17/2 - (x - 1/2)}]_0^2`
`= 1/sqrt17 [log (sqrt17 + 2x - 1)/(sqrt17 - 2x + 1)]_0^2`
`= 1/sqrt17 [log (sqrt17 + 3)/(sqrt17 - 3) - log (sqrt17 - 1)/(sqrt17 + 1)]`
`= 1/sqrt17 log [(sqrt17 + 3)/(sqrt17 - 3) xx (sqrt17 + 1)/(sqrt17 - 1)]`
`= 1/sqrt17 log [(17 +3 + 3sqrt17 + sqrt17)/(17 + 3 - 3sqrt17 - sqrt17)]`
`= 1/sqrt17 log ((20 + 4sqrt17)/(20 - 4sqrt17))`
`= 1/sqrt17 log ((5 + sqrt17)/(5 - sqrt17))`
`= 1/sqrt17 log ((5 + sqrt17)/(5 - sqrt17) xx (5 + sqrt17)/(5 + sqrt17))`
`= 1/sqrt17 log [(25 + 17 + 10sqrt17)/(25 - 17)]`
`= 1/sqrt17 log [(41 + 10 sqrt17)/8]`
`= 1/sqrt17 log [(21 + 5 sqrt17)/4]`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`