Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_{- 2}^2 \left| x + 1 \right| d x\]
\[\text{We know that}, \left| x + 1 \right| = \begin{cases} - \left( x + 1 \right) &,& - 2 \leq x \leq - 1\\x + 1&,& - 1 < x \leq 2\end{cases}\]
\[ \therefore I = \int_{- 2}^2 \left| x + 1 \right| d x\]
\[ \Rightarrow I = \int_{- 2}^{- 1} - \left( x + 1 \right) dx + \int_{- 1}^2 \left( x + 1 \right) dx\]
\[ \Rightarrow I = \left[ \frac{- x^2}{2} - x \right]_{- 2}^{- 1} + \left[ \frac{x^2}{2} + x \right]_{- 1}^2 \]
\[ \Rightarrow I = \frac{- 1}{2} + 1 + 2 - 2 + 2 + 2 - \frac{1}{2} + 1\]
\[ \Rightarrow I = 5\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate :
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.