हिंदी

Evaluate the integral by using substitution. ∫01sin-1(2x1+x2)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`

योग

उत्तर

Let  `int_0^1  sin^-1 ((2x)/(1 + x^2))  dx`

Substituting x = tan θ

`dx = sec^2 theta  d  theta`

And `(2 tan theta)/(1 + tan^2 theta) = sin 2 theta`

When x = 0

⇒ θ = 0

or x = 1

`=> theta = pi/4` 

Hence, `int_0^(pi/4)  sin^-1 (sin 2 theta) xx sec^2 theta  d  theta`

`2 = int_0^(pi/4)  theta sec^2 theta  d  theta`

`= 2 [(theta . tan theta)_0^(pi/4) - int_0^(pi/4) 1 * tan theta  d  theta]`

`= 2 [pi/4  tan  pi/4 - 0] - 2 [log cos theta]_0^(pi/4)`

`= pi/4 + 2 [log cos  pi/4 - log cos 0]`

`= pi/2 + 2 [log  1/sqrt2 - log 1]`

`= pi/2 - log 2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.9 [पृष्ठ ३४०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.9 | Q 3 | पृष्ठ ३४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×