हिंदी

Evaluate the Following Integral: ∫ − π 2 − 3 π 2 { Sin 2 ( 3 π + X ) + ( π + X ) 3 } D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]
योग

उत्तर

\[\text{Let I} = \int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Put

\[\pi + x = z\]
\[\Rightarrow dx = dz\]

When

\[x \to - \frac{3\pi}{2}, z \to - \frac{\pi}{2}\]

When

\[x \to - \frac{\pi}{2}, z \to \frac{\pi}{2}\]

\[\therefore I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left[ \sin^2 \left( 2\pi + z \right) + z^3 \right]dz\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 z + z^3 \right)dz ................\left[ \sin\left( 2\pi + \theta \right) = \sin\theta \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1 - \cos2z}{2}dz + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} z^3 dz\]

\[= \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dz - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2zdz + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} z^3 dz\]
\[ = \frac{1}{2} \times z_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left.\frac{1}{2} \times \frac{\sin2z}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} +\left. \frac{z^4}{4}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] - \frac{1}{4}\left[\sin\pi - \sin\left( - \pi \right) \right] + \frac{1}{4}\left( \frac{\pi^4}{16} - \frac{\pi^4}{16} \right)\]

\[= \frac{1}{2} \times \pi - \frac{1}{4}\left( 0 + 0 \right) + \frac{1}{4} \times 0\]
\[ = \frac{\pi}{2}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 32 | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×