Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
उत्तर
\[ \Rightarrow x = 1 + \sin^2 \theta\]
\[ \Rightarrow \sin\theta = \sqrt{x - 1}\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\sin^2 \theta \cos^2 \theta}} ...................\left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\ theta\cos\theta d\theta}{\sin\theta\cos\theta}\]
\[ \Rightarrow I = 2 \int_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow I = 2\theta |_0^\frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`