हिंदी

Evaluate the Following Definite Integral: ∫ 1 0 1 √ ( X − 1 ) ( 2 − X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
योग

उत्तर

Let I =
\[\int_1^2 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
Put
\[x = \cos^2 \theta + 2 \sin^2 \theta\]
`thereforedx=2costheta(-sintheta)dtheta+4sinthetacostheta d theta=2sinthetacostheta d theta`
Also,
\[x = \cos^2 \theta + 2 \sin^2 \theta\]
\[ \Rightarrow x = 1 + \sin^2 \theta\]
\[ \Rightarrow \sin\theta = \sqrt{x - 1}\]
When `xrarr1, sinthetararr0" or "thetararr0`
When \[x \to 2, \sin\theta \to 1\text{ or }\theta \to \frac{\pi}{2}\]
`therefore I = `\[\int_1^2 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
\[\Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\left( \cos^2 \theta + 2 \sin^2 \theta - 1 \right)\left( 2 - \cos^2 \theta - 2 \sin^2 \theta \right)}}\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\sin^2 \theta \cos^2 \theta}} ...................\left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\ theta\cos\theta  d\theta}{\sin\theta\cos\theta}\]
\[ \Rightarrow I = 2 \int_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow I = 2\theta |_0^\frac{\pi}{2}\]
\[\Rightarrow I = 2\left( \frac{\pi}{2} - 0 \right) = \pi\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 59 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×