हिंदी

Evaluate : 3 / 2 ∫ 0 | X Sin π X | D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]
योग

उत्तर

\[\text{For }0 < x < 1, x > 0\text{ and }\sin\pi x > 0 \Rightarrow x\sin\pi x > 0\]
\[\text{For }1 < x < \frac{3}{2}, x > 0\text{ and }\sin\pi x < 0 \Rightarrow x\sin\pi x < 0\]

\[\therefore \int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \int_0^1 x\sin\pi x dx - \int_1^\frac{3}{2} x\sin\pi x dx\]
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- \cos\pi x}{\pi} \right) - \int\left( \frac{- \cos\pi x}{\pi} \right)dx\]
\[= \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2}\]

Applying the limits, we get

\[\int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_0^1 - \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_1^\frac{3}{2} \]
\[ = \left[ \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right) \right] - \left[ \left( \frac{- \frac{3}{2}\cos\frac{3\pi}{2}}{\pi} + \frac{\sin\frac{3\pi}{2}}{\pi^2} \right) - \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) \right]\]

\[= \left[ \left( \frac{1}{\pi} + 0 \right) \right] - \left[ \left( 0 - \frac{1}{\pi^2} \right) - \left( \frac{1}{\pi} + 0 \right) \right]\]
\[ = \frac{1}{\pi} + \frac{1}{\pi^2} + \frac{1}{\pi}\]
\[ = \frac{2}{\pi} + \frac{1}{\pi^2}\]
\[ = \frac{2\pi + 1}{\pi^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 42 | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×