Advertisements
Advertisements
प्रश्न
Evaluate :
उत्तर
\[\text{For }0 < x < 1, x > 0\text{ and }\sin\pi x > 0 \Rightarrow x\sin\pi x > 0\]
\[\text{For }1 < x < \frac{3}{2}, x > 0\text{ and }\sin\pi x < 0 \Rightarrow x\sin\pi x < 0\]
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- \cos\pi x}{\pi} \right) - \int\left( \frac{- \cos\pi x}{\pi} \right)dx\]
Applying the limits, we get
\[\int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_0^1 - \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_1^\frac{3}{2} \]
\[ = \left[ \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right) \right] - \left[ \left( \frac{- \frac{3}{2}\cos\frac{3\pi}{2}}{\pi} + \frac{\sin\frac{3\pi}{2}}{\pi^2} \right) - \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) \right]\]
\[= \left[ \left( \frac{1}{\pi} + 0 \right) \right] - \left[ \left( 0 - \frac{1}{\pi^2} \right) - \left( \frac{1}{\pi} + 0 \right) \right]\]
\[ = \frac{1}{\pi} + \frac{1}{\pi^2} + \frac{1}{\pi}\]
\[ = \frac{2}{\pi} + \frac{1}{\pi^2}\]
\[ = \frac{2\pi + 1}{\pi^2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate: `int x/(x^2 + 1)"d"x`