हिंदी

Evaluate the Following Integral: ∫ π 3 π 6 1 1 + Cot 3 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 

योग

उत्तर

\[\text{Let I} = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx..............(1)\]

Then,

\[I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} \left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}dx .................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} \left( \frac{\pi}{2} - x \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \tan^\frac{3}{2} x}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\cot^\frac{3}{2} x}{\cot^\frac{3}{2} x + 1}dx ...................(2)\]

Adding (1) and (2), we get

\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1 + \cot^\frac{3}{2} x}{1 + \cot^\frac{3}{2} x}dx\]
\[ \Rightarrow 2I = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}\]
\[ \Rightarrow I = \frac{\pi}{12}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 18 | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×