Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx..............(1)\]
Then,
\[I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} \left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}dx .................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} \left( \frac{\pi}{2} - x \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \tan^\frac{3}{2} x}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\cot^\frac{3}{2} x}{\cot^\frac{3}{2} x + 1}dx ...................(2)\]
Adding (1) and (2), we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1 + \cot^\frac{3}{2} x}{1 + \cot^\frac{3}{2} x}dx\]
\[ \Rightarrow 2I = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}\]
\[ \Rightarrow I = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int x/(x^2 + 1)"d"x`