Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi x \cos^2 x\ d\ x . . . (i) \]
\[ = \int_0^\pi \left( \pi - x \right) \cos^2 \left( \pi - x \right)\ d\ x\]
\[ = \int_0^\pi \left( \pi - x \right) \cos^2 x\ dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \cos^2 x\ dx\]
\[ = \int_0^\pi \pi \cos^2 x\ dx\]
\[ = \pi \int_0^\pi \frac{1 + \cos2x}{2} dx\]
\[ = \frac{\pi}{2} \int_0^\pi \left( 1 + \cos2x \right) dx\]
\[ = \frac{\pi}{2} \left[ x + \frac{\sin2x}{2} \right]_0^\pi \]
\[ = \frac{\pi}{2}\left( \pi - 0 \right)\]
\[ Hence\ I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`